8-(3,3-Dimethylallyl)-Substituted Flavonoid Glycosides from the Aerial Parts of *Epimedium koreanum*

by Hai-Yu Zhao, Li Fan, Lei Zhou, Jian Han, Bao-Rong Wang, and De-An Guo*

The State Key Laboratory of Natural and Biomimetic Drug, School of Pharmaceutical Sciences, Peking University, Beijing 100083, P. R. China (phone/fax: + 86-10-82802700; e-mail: gda5958@163.com)

Ten 8-(3,3-dimethylallyl)-substituted flavonoid glycosides, including the four new flavonol glycosides 1 and 3-5 and the new flavanonol glycoside 2, besides five known flavonol glycosides, were isolated from the aerial parts of *Epimedium koreanum* NAKAI. Their structures were determined by spectroscopic methods, including UV, IR, 1D- and 2D-NMR, ESI-MSⁿ, HR-ESI-MS, and circular dichroism (CD) experiments.

Introduction. – The aerial parts of *Epimedium koreanum* NAKAI have been used in China for over 2000 years for various medicinal treatments, in particular as tonic, antirheumatic, and aphrodisiac [1]. Earlier chemical investigation on *E. koreanum* afforded a series of characteristic 8-(3,3-dimethylallyl)-substituted flavonoids, which have been reported to possess multiple biological activities such as androgenic, antioxidant and antidepressant-like actions [2-5]. Our investigation aimed at finding new active chemical constituents from this plant led to the isolation of ten compounds, including the four new flavonol glycosides **1** and **3**–**5**, the new flavanonol glycosides **2**, and five known flavonol glycosides¹) (flavonol = 3-hydroxy-2-phenyl-4*H*-1-benzopyran-4-one, flavanonol = 2,3-dihydro-3-hydroxy-2-phenyl-4*H*-1-benzopyran-4-one).

Results and Discussion. – Compound **1** was obtained as a yellow amorphous solid. The molecular formula of **1** was determined as $C_{32}H_{38}O_{16}$ based on the HR-ESI-MS $([M + H]^+ \text{ at } m/z \ 679.2225)$. The UV absorption maxima (250, 267, and 373 nm) suggested its flavonol skeleton. Detailed analysis of the ¹H-NMR chemical shifts and coupling constants of the protons of the sugar moieties indicated them to be β -glucopyranose residues [6], which was also supported by acidic hydrolysis and subsequent TLC analysis of the sugars. The structure of **1** was established as 8-(3,3-dimethylallyl)-4',5,7-trihydroxyflavonol 7-[*O-β*-D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranoside]¹).

The ¹H-NMR spectrum of **1** (*Table 1*) showed an aromatic OH group corresponding to OH–C(5) at δ (H) 12.46 (*s*). The presence of four aromatic protons forming an *AA'BB'* system at δ (H) 8.03 (*d*, *J* = 8.5 Hz) and 6.93 (*d*, *J* = 8.5 Hz) along with a *s* at δ (H) 6.57 (*s*) resembled those of a 5,7,4'-trioxygenated flavonol. Additionally, signals at δ (H) 5.17 (*t*, *J* = 6.0), 3.36–3.40 (*m*), and 3.48–3.55 (*m*) as well as

¹⁾ Arbitrary atom numbering of 1-5; for systematic names, see *Exper. Part.*

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

those of two Me groups at $\delta(H)$ 1.61 and 1.75 (2s) revealed the presence of a 3,3-dimethylallyl (= 3methylbut-2-en-1-yl) group. Two sugar moieties were observed with anomeric protons appearing at $\delta(H)$ 5.20 (d, J = 6.5 Hz, H–C(1")) and $\delta(H)$ 4.56 (d, J = 7.5 Hz, H–C(1"')). The resonances of the protons were assigned with the help of the HMQC experiment. The ¹³C-NMR spectrum of **1** (*Table 1*) confirmed the presence of a 3,3-dimethylallyl group ($\delta(C)$ 21.3, 122.8, 130.6, 25.4, and 17.9). The signal of C(8) at $\delta(C)$ 108.1 was shifted downfield by 14.6 ppm compared to kaempferol (= 3,5,7-trihydroxy-2-(4hydroxyphenyl)-4*H*-1-benzopyran-4-one) which suggested the 3,3-dimethylallyl group to be attached at C(8) [7]. This was further supported by the HMBC correlation of C(8) with H–C(12) ($\delta(H)$ 5.17 (t, J =6.0)). In the sugar parts, the downfield shift of C(2") at $\delta(C)$ 81.1 together with the upfield shift of C(1"") at $\delta(C)$ 103.9 established the attachment of the terminal glucose unit to C(2"). Finally, the HMBC plot showed a cross-peak H–C(1") ($\delta(H)$ 5.20)/C(7) ($\delta(C)$ 159.5) which indicated that the [$O-\beta$ -Dglucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]oxy residue was attached to C(7) (*Fig.*).

Compound **2** was isolated as a light yellow amorphous solid. The molecular formula $C_{32}H_{40}O_{16}$ was established by HR-ESI-MS ($[M + Na]^+$ at m/z 703.2207). The UV spectrum of **2** showed absorptions at 289 and 344 (sh) nm, suggesting the presence of a flavanonol derivative. Some changes in the NMR spectra (*Table 1*) revealed that **2** was the corresponding flavanonol of **1**. This was also supported by a comparison of the molecular formula of **2** with that of **1**. Compound **2** was shown to have the (2*R*,3*R*)-

2187

È

	1 ¹)		2 ¹)		
	$\delta(H)$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	
C(2) or $H-C(2)$		147.5	5.05 (d, J = 11.5)	82.8	
C(3) or $H-C(3)$		135.7	4.56 (d, J = 11.5)	71.9	
C(4)		176.3		199.1	
C(5)	12.46 (s, OH)	159.2	11.83 (s, OH)	160.9	
H-C(6)	6.57(s)	97.0	6.29(s)	95.1	
C(7)		159.5		162.6	
C(8)		108.1		109.1	
C(9)		152.7		158.7	
C(10)		104.4		101.8	
CH ₂ (11)	3.36 - 3.40, 3.48 - 3.55 (2m)	21.3	3.03 - 3.09, 3.28 - 3.33 (2m)	21.3	
H - C(12)	5.17 (t, J = 6.0)	122.8	5.10 (t, J = 6.0)	122.7	
C(13)		130.6	1.50(s)	130.0	
Me(14)	1.61 (s)	25.4	1.58(s)	25.6	
Me(15)	1.75(s)	17.9		17.6	
C(1')		121.8		127.7	
H-C(2')	8.03 (d, J = 8.5)	129.4	7.32 (d, J = 8.5)	129.2	
H-C(3')	6.93 (d, J = 8.5)	115.4	6.79 (d, J = 8.5)	114.8	
C(4')		158.4		157.6	
H-C(5')	6.93 (d, J = 8.5)	115.4	6.79 (d, J = 8.5)	114.8	
H-C(6')	8.03 (d, J = 8.5)	129.4	7.32 (d, J = 8.5)	129.2	
Glc (inner)					
H - C(1'')	5.20 (d, J = 6.5)	98.2	5.11 (d, J = 6.5)	98.0	
H-C(2")	3.63 - 3.66 (m)	81.1	3.59 - 3.62 (m)	81.3	
H-C(3")	3.12-3.14 (<i>m</i>)	76.2	3.09 - 3.15(m)	76.2	
H-C(4")	3.23 - 3.40 (m)	69.3	3.22 - 3.25(m)	69.2	
H-C(5")	3.47-3.55 (<i>m</i>)	76.8	3.49 - 3.56(m)	76.9	
CH ₂ (6")	3.48-3.55, 3.66-3.70 (2 <i>m</i>)	60.6	3.43-3.47, 3.66-3.70 (2 <i>m</i>)	60.4	
Glc (terminal)					
H-C(1''')	4.56 (d, J = 7.5)	103.9	4.53 (d, J = 8.0)	104.1	
H-C(2"")	3.23 - 3.40 (m)	74.6	3.22 - 3.25(m)	74.7	
H-C(3''')	3.59 - 3.66 (m)	76.2	3.49 - 3.56(m)	76.3	
H-C(4"")	3.23 - 3.40 (m)	69.6	3.29 - 3.35(m)	69.4	
H-C(5"")	3.07-3.10 (<i>m</i>)	76.9	2.97 - 3.05(m)	77.0	
CH ₂ (6''')	3.55 - 3.60, 3.66 - 3.70 (2m)	60.5	3.43-3.47, 3.66-3.70 (2 <i>m</i>)	60.3	

Table 1. ¹³C- and ¹H-NMR Data (500 (¹H) and 125 MHz (¹³C), (D₆)DMSO) of **1** and **2**. δ in ppm, J in Hz.

configuration, based on the positive *Cotton* effects at 241 and 338 nm in the CD spectrum of **2** [8]. Compound **2** was identified as (2R,3R)-8-(3,3-dimethylallyl)-2,3-dihydro-4',5,7-trihydroxyflavonol 7- $[O-\beta$ -D-glucopyranosyl- $(1 \rightarrow 2)$ - β -D-glucopyranoside]¹).

The ¹H-NMR spectrum of **2** was very similar to that of **1**, except for two additional signals at $\delta(H)$ 5.05 (*d*, J = 11.5 Hz) and 4.56 (*d*, J = 11.5 Hz). In the ¹³C-NMR spectrum, compared to **1**, the signals at $\delta(C)$ 176.3, 147.5, and 135.7 were replaced by signals at $\delta(C)$ 199.1, 82.8, and 71.9. The location of the sugar chain and the inter-glycoside linkage were established from the HMBC cross-peaks H–C(1'') ($\delta(H)$ 5.11)/C(7) ($\delta(C)$ 162.6) and H–C(1''') ($\delta(H)$ 4.53)/C(2'') ($\delta(C)$ 81.3) (*Fig*).

Compound **3**, a yellow amorphous solid, had the molecular formula $C_{42}H_{52}O_{22}$, as deduced from the HR-ESI-MS ($[M + Na]^+$ at m/z 931.2857). The IR spectra showed absorption bands for OH groups (3386 cm⁻¹), a flavonol carbonyl group (1739 cm⁻¹), and ester groups (1650 and 1597 cm⁻¹). A comparison of the ¹H- and ¹³C-NMR data of **3** (*Table 2*) with those of the known epimedokoreanoside I (**6**) suggested that the structures of both compounds were similar but that a MeO group was missing in **3**. The structure of compound **3** was elucidated as 8-(3,3-dimethylallyl)-4',5,7-trihydroxyflavonol 3-[*O*-6-*O*-acetyl- β -D-glucopyranosyl-(1 \rightarrow 3)-4-*O*-acetyl- α -L-rhamnopyranoside] 7-(β -D-glucopyranoside)¹).

The ¹H-NMR spectrum of **3** confirmed the presence of a 3,3-dimethylallyl and two acetyl groups, and of one rhamnose and two glucose moieties. The ¹³C-NMR spectral data of **3** clearly showed the characteristic signals of a 3,3-dimethylallyl, one rhamnose, and two glucose moieties, and of two acetyl groups at δ (C) 170.3, 169.7, 20.6, and 20.7. The positions of the three sugar units and two acetyl groups were confirmed by the HMBC experiment. Thus, the correlation H–C(1^{'''}) (δ (H) 5.00)/C(7) (δ (C) 160.5) indicated that a glucose unit was attached to C(7) (*Fig.*). The correlation C(3) (δ (C) 133.2)/H–C(1^{''}) (δ (H) 5.42) and the cross-peak H–C(1^{'''}) (δ (H) 4.28)/C(3^{''}) (δ (C) 77.2) suggested the attachment of the rhamnose unit at C(3) and of the other glucose unit at C(3^{''}) of the rhamnose unit. The HMBC plot also revealed that the sugar proton H–C(4^{'''}) (δ (H) 4.83 (*t*, *J* = 10.0)) was correlated with δ (C) 170.3, and CH₂(6^{'''}) (δ (H) 4.11–4.16 and 4.25–4.32 (2*m*)) with δ (C) 169.7, indicating the linkage of

Table 2. ¹³C- and ¹H-NMR Data (500 MHz (¹H) and 125 MHz (¹³C), (D₆)DMSO) of 3^1). δ in ppm, *J* in Hz.

	$\delta(\mathrm{H})$	$\delta(C)$		$\delta(\mathrm{H})$	$\delta(C)$
C(2)		157.7	3-O-Rha		
C(3)		133.2	H - C(1'')	5.42 (br. s)	100.8
C(4)		178.0	H-C(2'')	3.15 - 3.20 (m)	69.7
C(5)	12.55 (s, OH)	159.0	H - C(3'')	3.40 - 3.50 (m)	77.2
H-C(6)	6.62(s)	98.2	H-C(4'')	4.83 (t, J = 10.0)	71.2
C(7)		160.5	H - C(5'')	3.29 - 3.33(m)	68.4
C(8)		108.3	Me(6")	0.72 (d, J = 6.0)	17.0
C(9)		153.0	MeCOO-C(4'')	1.95(s)	170.3, 20.6
C(10)		105.4	Glc at Rha		
$CH_{2}(11)$	3.35 - 3.40,	21.4	H - C(1''')	4.28 (d, J = 6.5)	104.9
	3.52 - 3.58(2m)		H - C(2''')	2.97 - 3.03 (m)	72.9
H - C(12)	5.17(t, J = 6.0)	122.2	H - C(3''')	3.74 - 3.87(m)	76.6
C(13)		131.1	H - C(4''')	3.15 - 3.20 (m)	69.7
Me(14)	1.68(s)	25.4	H - C(5''')	3.48 - 3.57 (m)	73.6
Me(15)	1.59(s)	17.8	CH ₂ (6''')	4.11-4.16,	63.9
C(1')		120.0		4.25 - 4.32(2m)	
H-C(2')	7.79 (d, J = 8.0)	130.6	<i>MeC</i> OO-C(6''')	1.97 (s)	169.7, 20.7
H-C(3')	6.93 (d, J = 8.0)	115.7	7- <i>O</i> -Glc		
C(4′)		161.3	H-C(1'''')	5.00 (d, J = 6.5)	100.6
H-C(5')	7.79 (d, J = 8.0)	115.7	H-C(2'''')	3.35 - 3.49(m)	73.3
H-C(6')	6.93 (d, J = 8.0)	130.6	H-C(3'''')	3.29 - 3.33 (m)	76.6
			H - C(4'''')	3.15 - 3.20 (m)	70.3
			H-C(5"")	3.42 - 3.48(m)	76.6
			CH ₂ (6'''')	3.40-3.46,	60.6
			2 × /	3.68-3.75 (2 <i>m</i>)	

the two acetyl groups with OC(4") and OC(6") [9] (*Fig.*). Additionally, this was also supported by the ESI-MS³ experiment. The ESI-MS of **3** gave an $[M - H]^-$ ion at m/z 907. Its fragmentation was triggered by initial loss of the glucose moiety to yield a prominent ion at m/z 745. In the MS³ of m/z 745, losses of an acetyl group, Glc(OAc), and both Glc(OAc) and Rha(OAc) were observed with the formation of ions at m/z 703 (*i.e.*, 745 – 42), 541 (*i.e.*, 745 – 204), 353 (*i.e.*, 745 – 204 – 188), respectively.

Compound **4** was isolated as yellow amorphous solid. The molecular formula $C_{41}H_{52}O_{19}$ was deduced from HR-ESI-MS ($[M + Na]^+$ at m/z 871.2967). The UV absorption maxima (269, 315, and 354 nm) indicated the presence of a flavonol skeleton. The ¹H- and ¹³C-NMR data of **4** (*Table 3*) supported the identification of the aglycone as anhydroicaritin (=8-(3,3-dimethylallyl)kaempferol 4'-methyl ether). Additionally, the presence of a rhamnose, a glucose, and a dideoxyfuranose subunit was detected. The spectral data of the dideoxyfuranose subunit were in agreement with those observed in calactinic acid methyl ester and further cardenolides obtained recently from *Asclepias curassavica* and *Calotropis gigantean* [10][11]. Compound **4** was assigned as 8-(3,3-dimethylallyl)-5,7-dihydroxy-4'-methoxyflavonol 3-[*O*-3,5-dideoxy-2-*C*-(ethoxycarbonyl)- β -D-*erythro*-pentofuranosyl-(1 \rightarrow 2)- α -L-rhamnopyranoside] 7-(β -D-glucopyranoside)¹).

The glucose and rhamnose units of **4** were placed at C(7) and C(3), respectively, on the basis of the HMBC cross-peaks $\delta(H) 4.99/\delta(C) 160.5$ and $\delta(H) 5.36/\delta(C) 134.4$. The dideoxyfuranosyl subunit was revealed by the ¹H,¹H-COSY cross-peaks H-C(5''') ($\delta(H) 4.22-4.28$)/CH₂(4''') ($\delta(H) 1.93-1.97$) and Me(6''') ($\delta(H) 1.12$). It was also supported by the H,C long-range correlations H-C(1''') ($\delta(H) 5.13$)/C(2''') ($\delta(C) 83.6$) and C(4''') ($\delta(C) 40.3$). Connectivity of the Et group to C(3''') and of the OH group to C(2''') were established from the long-range HMBC correlations MeCH₂O-C(3''') ($\delta(H) 4.04-4.09$)/C(3''') ($\delta(C) 170.4$) and OH-C(2''') ($\delta(H) 5.90$)/C(2''') ($\delta(C) 83.6$). The HMBC cross-peak H-C(1''') ($\delta(H) 5.13$)/ $\delta(C) 74.8$ which was ascribed to C(2'') of the rhamnose unit based on ¹H,¹H-COSY and HMBC experiments, indicated that the dideoxyfuranose unit was attached to C(2'') of the rhamnose residue.

Compound **5** was also obtained as a yellow amorphous solid. It was assigned the molecular formula $C_{39}H_{48}O_{19}$ deduced from HR-ESI-MS ($[M - H]^-$ at m/z 819.2711). Its flavonol skeleton was detected from the UV absorption maxima (270, 314, and 359 nm). The ¹H- and ¹³C-NMR data of **5** (*Table 3*) were very similar to **4**, except for the absence of the Et group. The similarity of the NMR data and the molecular formula suggested that **5** was a deethylated derivative of **4**. This was further supported by ¹H,¹H-COSY and HMBC experiments, as well as by the ESI-MS³ fragmentation behavior of **5**. The quasimolecular $[M - H]^-$ ion at m/z 819 yielded a $[(M - Glc) - H]^-$ ion at m/z 657. The MS³ fragmentation from this ion gave daughter ions at m/z 513 $[(M - Glc - 144) - H]^-$ and 367 $[(M - Glc - 144 - Rha) - H]^-$. Thus, **5** was elucidated as $8-(3,3-\text{dimethylallyl})-5,7-\text{dihydroxy-4'-methoxyflavonol} 3-[O-2-C-carboxy-3,5-dideoxy-<math>\beta$ -D-*erythro*-pentofuranosyl- $(1 \rightarrow 2)-\alpha$ -L-rhamnopyranoside] 7-(β -D-glucopyranoside)¹).

The remaining five flavonol glycosides were identified as 8-(3,3-dimethylallyl)-5,7dihydroxy-4'-methoxyflavonol 3,7-di(β -D-glucopyranoside) [12], korepimedoside A (=8-(3,3-dimethylallyl)-5,7-dihydroxy-4'-methoxyflavonol 3-[*O*-6-*O*-acetyl- β -D-glucopyranosyl-(1 \rightarrow 3)-4-*O*-acetyl- α -L-rhamnoside]) [13], korepimedoside C (=8-(3,3dimethylallyl)-5,7-dihydroxy-4'-methoxyflavonol 3-[*O*- β -D-glucopyranosyl-(1 \rightarrow 3)-4-

Position	4 ¹)		5 ¹)		
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	
C(2)		157.2		157.3	
C(3)		134.4		134.4	
C(4)		178.1		178.3	
C(5)	12.60 (s, OH)	159.0	12.61 (s, OH)	159.2	
H-C(6)	6.62(s)	98.1	6.63(s)	98.1	
C(7)	~ /	160.5		160.6	
C(8)		108.3		108.4	
C(9)		152.9		153.0	
C(10)		105.5		105.5	
$CH_{2}(11)$	3.38 - 3.41, $3.54 - 3.58$ (2m)	21.3	3.39 - 3.42, 3.52 - 3.56 (2m)	21.5	
H - C(12)	5.15 (t, I = 6.0)	122.0	5.17 (t, I = 6.0)	122.2	
C(13)		131.0		131.2	
Me(14)	1.59(s)	25.3	1.59(s)	25.5	
Me(15)	1.67(s)	17.7	1.68 (s)	17.9	
MeO	3.84(s)	55.4	3.84(s)	55.5	
C(1')	5.04 (3)	122.0	5.64 (3)	122.2	
$H_{-C(2')}$	7.88(d I - 8.5)	122.0	7.89(d I - 8.5)	122.2	
H = C(2')	7.30(u, J = 0.5) 7.12 (d. $I = 8.5$)	114.0	7.69(u, J = 0.5) 7.13 (d. $I = 8.5$)	114.2	
$\Gamma = C(3)$	7.12 $(u, J = 0.5)$	161 /	7.15 $(u, J = 0.5)$	161.5	
U(4)	712(d I - 85)	101.4	712(d I - 85)	101.5	
H = C(5)	7.12(u, J = 6.5)	114.0	7.15(u, J = 6.5)	114.2	
$\Pi = C(0)$	7.88 $(a, J = 8.3)$	150.4	7.89(a, J = 8.3)	150.5	
3-0-Klia	5.26 (br. c)	100.6	5 45 (a)	100.6	
H = C(1')	5.50(01.8)	74.0	5.45(8)	75.1	
$\Pi - C(2)$	4.10(01.3)	74.0	4.10(01.3)	70.6	
H = C(3)	3.08 - 3.12 (m)	70.5	3.08 - 3.12 (m)	70.0	
H - C(4'')	2.95 - 2.99(m)	/1.3	2.95 - 2.99(m)	/1.0	
$H = C(5^{\circ})$	3.69 - 3.72 (m)	/0.1	3.69 - 3.72 (m)	17.5	
$Me(6^{\circ})$	0.78(d, J = 6.0)	17.4	0.78(d, J = 6.0)	17.5	
Furanose	5.12 ()	107.0	5.05 ()	407.5	
H-C(1''')	5.13(s)	107.2	5.07(s)	107.5	
C(2''')	5.90(s, OH)	83.6		83.6	
C(3''')=O		170.4		172.4	
$CH_2(4''')$	1.93 - 1.97 (m)	40.3	1.92 - 1.96(m)	40.3	
H-C(5''')	4.22 - 4.28(m)	74.8	4.15 - 4.24 (m)	75.1	
Me(6''')	1.12 (d, J = 6.0)	22.4	1.11 (d, J = 6.0)	22.6	
$MeCH_2O-C(3''')$	4.04 - 4.09(m)	60.3			
$MeCH_2O-C(3''')$	1.19 (d, J = 7.5)	14.0			
7- <i>O</i> -Glc					
H - C(1'''')	4.99 (d, J = 7.0)	100.5	5.01 (d, J = 7.0)	100.5	
H-C(2"")	3.40 - 3.49(m)	73.3	3.40 - 3.49 (m)	73.4	
H-C(3"")	3.32 - 3.33(m)	76.5	3.32–3.33 (<i>m</i>)	76.6	
H-C(4"")	3.14–3.16 <i>(m)</i>	69.6	3.10-3.19 (<i>m</i>)	69.7	
H-C(5"")	3.40 - 3.49(m)	77.1	3.40-3.49 (<i>m</i>)	77.2	
CH ₂ (6'''')	3.41-3.44, 3.69-3.72 (2 <i>m</i>)	60.6	3.40 - 3.44, 3.70 - 3.72 (2m)	60.7	

Table 3. ¹³C- and ¹H-NMR Data (500 (¹H) and 125 MHz (¹³C), (D₆)DMSO) of **4** and **5**. δ in ppm, J in Hz.

O-acetyl- α -L-rhamnoside] 7-(β -D-glucopyranoside)) [14], epimedokoreanoside I (= 8-(3,3-dimethylallyl)-5,7-dihydroxy-4'-methoxyflavonol 3-[*O*-6-*O*-acetyl- β -D-glucopyranosyl-(1 \rightarrow 3)-4-*O*-acetyl- α -L-rhamnoside] 7-(β -D-glucopyranoside)) (**6**) [15], and caohuoside B (= 8-(3,3-dimethylallyl)-5,7-dihydroxy-4'-methoxyflavonol 3-[*O*-5,6-*O*diacetyl- β -D-glucopyranosyl-(1 \rightarrow 3)-4-*O*-acetyl- α -L-rhamnoside] 7-(β -D-glucopyranoside)) [16], respectively. Their properties and spectral data were almost identical to those reported earlier. 8-(3,3-dimethylallyl)-5,7-dihydroxy-4'-methoxyflavonol 3,7di(β -D-glucopyranoside) was isolated from a naturally growing plant for the first time; it had been previously reported in the cell suspension cultures of *Vancouveria hexandra* [12]. The last four of these known flavonol glucosides have been already found in *E. koreanum* before [13–16].

This work was supported by the program for *Changjiang Scholars and Innovation Team in University* (No. 985-2-063-112).

Experimental Part

General. Column chromatography (CC): macroporous resin (*AB-8*; *Tianjin Nankai Chemical Factory*, P. R. China), polyamide (60–90 mesh; *Zhejiang Taizhou Chemical Factory*, P. R. China), *Sephadex LH-20 (Pharmacia)*, *C-18* reversed-phase silica gel (50 µm; *Merck*). HP-TLC: silica gel plate (*Merck*). Prep. HPLC: *Spectra-P-100* pump (*Thermo Separation Products*), connected to a *Spectra-UV-100* detector (*Thermo Separation Products*), *Zorbax-SB-ODS* column (20 mm i.d. × 150 mm, 5 µm; *Agilent*), flow rate 2.0 ml/min; wavelength detection at 270 nm. M.p.: *X-6* melting-point apparatus (*Beijing TECH Instrument Co., Ltd.*); uncorrected. Optical rotation: *AA10R* digital polarimeter; in MeOH at 25°. UV: *TU-1901-UV-VIS* spectrophotometer. CD Spectra: *Jasco J-810* spectropolarimeter. IR: *Nicolet Avatar-FT-IR* spectrometer; KBr pellets. NMR: *Bruker ARX-400* and *DRX-500* spectrometers; in (D₆)DMSO. ESI-MSⁿ: *Finnigan LCQ-Advantage* ion-trap mass spectrometer (*Thermo Finnigan*, San Jose, CA, USA). HR-ESI-MS: *Bruker APEX IV FT-MS*.

Plant Material. The aerial parts of *Epimedium koreanum* NAKAI (Berberidaceae) were bought from *Sinopharm Company*, Beijing, China, and identified by professor *De-An Guo*, School of Pharmaceutical Sciences, Peking University. The voucher specimen *yyh101* was deposited in the School of Pharmaceutical Sciences, Peking University, Beijing, P. R. China.

Extraction and Isolation. The powdered aerial parts (5 kg) of *E. koreanum* NAKAI (Berberidaceae) was refluxed with 70% EtOH (1001) 3 times for 2 h. The extract was concentrated and the residue suspended in H₂O (51) and partitioned successively with petroleum ether (5 × 51), AcOEt (5 × 51), and BuOH (5 × 51). The AcOEt fraction (70 g) was then subjected to CC (polyamide, CHCl₃/MeOH 60:1 \rightarrow 1:1): *Fractions* 1–6. *Fr.* 4 was applied to CC (polyamide, CHCl₃/MeOH 25:1) and open CC (*ODS*, 40–80% aq. MeOH): pure korepimedoside A (20 mg), and a crude mixture which was further purified by prep. HPLC (MeCN/H₂O 40:60) to yield **1** (15 mg), **2** (8 mg), and **3** (16 mg). *Fr.* 5 was applied to CC (polyamide, CHCl₃/MeOH 15:1), open CC (*ODS*, 20–50% aq. MeOH), and finally purified by prep. HPLC (MeCN/H₂O 25:75): **4** (5 mg), **5** (8 mg), 8-(3,3-dimethylallyl)-5,7-dihydroxy-4'-methoxyflavonol 3,7-di(β -D-glucopyranoside) (15 mg), and caohuoside B (20 mg). The BuOH fraction (80 g) was fractioned by CC (macroporous resin (bead diameters 0.3–1.2 mm), H₂O, 30% EtOH, 70% EtOH, 100% EtOH): 4 fractions. The fraction of 70% EtOH (35 g) yielded korepimedoside C (10 mg) and epimedokoreanoside I (**6**; 20 mg) by CC (polyamide, CHCl₃/MeOH 40:1 \rightarrow 1:1) and repeated open CC (*ODS*, 60–80% aq. MeOH).

Acid Hydrolysis of Glycosides. Solns. of 1-5 in MeOH were applied onto an HP-TLC silica gel plate $(10 \times 10 \text{ cm})$ and hydrolyzed with HCl vapor for 40 min at $50-60^{\circ}$. Sugars were identified by comparison with authentic samples. After elution with CHCl₃/MeOH/H₂O 15:6:2, glucose was detected from 1 and 2 and glucose and rhamnose from 3-5 (spraying with 2% naphthalen-1-ol/sulfuric acid/EtOH, then heating at 105°) [17].

8-(3,3-Dimethylallyl)-4',5,7-trihydroxyflavonol 7-[O-β-D-Glucopyranosyl-($1 \rightarrow 2$)-β-D-glucopyranoside] (=7-[(2-O-β-D-Glucopyranosyl-β-D-glucopyranosyl)oxy]-3,5-dihydroxy-2-(4-hydroxyphenyl)-8-(3-methylbut-2-en-1-yl)-4H-1-benzopyran-4-one; 1): Yellow amorphous solid. M.p. 103–105°. [a]₂₅^D = -41.2 (c=0.017, MeOH). UV (MeOH): 250 (4.23), 267 (4.22), 373 (3.83). IR (KBr): 3405, 2921, 2854, 1650, 1601, 1510, 1451, 1352, 1177, 1076, 894. ¹H- and ¹³C-NMR: Table 1. ESI-MS: 677 ([M - H]⁻), 557, 515, 395, 353. HR-ESI-MS: 679.2225 ([M + H]⁺, C₃₂H₃₉O₁₆; calc. 679.2233).

(2R,3R)-8-(3,3-Dimethylallyl)-2,3-dihydro-4',5,7-trihydroxyflavonol 7- $[O-\beta-D-Glucopyranosyl-(1 \rightarrow 2)-\beta-D-glucopyranoside] (=<math>(2R,3R)$ -7- $[(2-O-\beta-D-Glucopyranosyl-\beta-D-glucopyranosyl)oxy]$ -2,3-dihydro-3,5-dihydroxy-2-(4-hydroxyphenyl)-8-(3-methylbut-2-en-1-yl)-4H-1-benzopyran-4-one; **2**): Light yellow amorphous solid. M.p. 123 – 125°. $[a]_{D}^{25} = -21.1 (c = 0.019, MeOH)$. UV (MeOH): 289 (4.37), 344 (3.71). CD (MeOH, c = 0.009; λ ($[\theta]$): 338 (+6266), 323 (0), 291 (23249), 268 (0), 241 (+4220). IR (KBr): 3415, 2925, 1641, 1586, 1451, 1253, 1176, 1075, 988, 837. ¹H- and ¹³C-NMR: *Table 1*. ESI-MS: 703 ($[M + Na]^+$), 684, 589, 476, 458, 363. HR-ESI-MS: 703.2207 ($[M + Na]^+$, $C_{32}H_{40}O_{16}Na^+$; calc. 703.2209).

8-(3,3-Dimethylallyl)-4',5,7-trihydroxyflavonol 3-[O-6-O-Acetyl-β-D-glucopyranosyl-($1 \rightarrow 3$)-4-O-acetyl-α-L-rhamnopyranoside] 7-(β-D-Glucopyranoside) (= 3-{[4-O-Acetyl-3-O-(6-O-acetyl-β-D-glucopyranosyl]oxy]-6-deoxy-α-L-mannopyranosyl]oxy]-7-(β-D-glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphen-yl)-8-(3-methylbut-2-en-1-yl)-4H-1-benzopyran-4-one; **3**): Yellow amorphous solid. M.p. 131–133°. [α]_D²⁵ = -75 (c = 0.012, MeOH). UV (MeOH): 270 (4.70), 320 (4.40), 353 (4.36). IR (KBr): 3386, 2922, 1739, 1650, 1597, 1441, 1375, 1223, 1177, 1076, 1047, 823. ¹H- and ¹³C- NMR: *Table* 2. ESI-MS: 907 ([M - H]⁻). HR-ESI-MS: 931.2857 ([M + Na]⁺, C₄₂H₅₂O₂₂Na⁺; calc. 931.2843).

8-(3,3-Dimethylallyl)-5,7-dihydroxy-4'-methoxyflavonol 3-[O-3,5-Dideoxy-2-C-(ethoxycarbonyl)- β -D-erythro-pentofuranosyl-($1 \rightarrow 2$)- α -L-rhamnopyranoside] 7-(β -D-glucopyranoside) (= 3-{{6-Deoxy-2-O-[3,5-dideoxy-2-C-(ethoxycarbonyl)- β -D-erythro-pentofuranosyl]- α -L-mannopyranosyl]oxy}-7-(β -D-glucopyranosyloxy)-5-hydroxy-2-(4-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-4H-1-benzopyran-4-one; **4**): Yellow amorphous solid. M.p. 90–92°. [α]₂₅²⁵ = -57.9 (c = 0.019, MeOH). UV (MeOH): 269 (4.25), 315 (3.98), 354 (3.81). IR (KBr): 3305, 2929, 2859, 1645, 1556, 1439, 1374, 1179, 1079. ¹H- and ¹³C-NMR: *Table 3.* ESI-MS: 871 ([M + Na]⁺), 677, 531, 369. HR-ESI-MS: 871.2967 ([M + Na]⁺, C₄₁H₅₂O₁₉Na⁺; calc. 871.2995).

8-(3,3-Dimethylallyl)-5,7-dihydroxy-4'-methoxyflavonol 3-[O-2-C-Carboxy-3,5-dideoxy-β-D-erythro-pentofuranosyl-(1 → 2)-α-L-rhamnopyranoside] 7-[β-D-glucopyranoside) (= 3-{[2-O-(2-C-Carboxy-3,5-dideoxy-β-D-erythro-pentofuranosyl)-6-deoxy-α-L-mannopyranosyl]oxy]-7-(β-D-glucopyranosyloxy)-5-hydroxy-2-(4-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-4H-1-benzopyran-4-one; 5): Yellow amorphous solid. M.p. 94–96°. [a]²⁵_D = -55.6 (c = 0.018, MeOH). UV (MeOH): 270 (4.27), 314 (4.02), 359 (3.89). IR (KBr): 3422, 2925, 2850, 1650, 1599, 1510, 1440, 1378, 1180, 1076. ¹H- and ¹³C-NMR: *Table 3.* ESI-MS: 819 ([M - H]⁻). HR-ESI-MS: 819.2711 ([M - H]⁻, C₃₉H₄₇O₁₉; calc. 819.2723).

REFERENCES

- National Commission of Chinese Pharmacopoeia, 'Pharmacopoeia of the People's Republic of China', Chemical Industry Press, Beijing, 2005, Vol. 1, p. 229.
- [2] Y. K. Wang, Z. Q. Huang, Pharm. Res. 2005, 52, 174.
- [3] Y. Pan, L. D. Kong, X. Xia, W. Y. Zhang, Z. H. Xia, F. X. Jiang, *Pharmacol. Biochem. Behav.* 2005, 82, 686.
- [4] H. X. Ning, Z. C. Xin, G. T. Lin, L. Banie, T. F. Lue, C. S. Lin, Urology 2006, 68, 1350.
- [5] H. Wu, E. J. Lien, L. L. Lien, Prog. Drug Res. 2003, 60, 1.
- [6] M. Straubinger, M. Jezussek, R. Waibel, P. Winterhalder, Nat. Prod. Lett. 1997, 10, 213.
- [7] K. R. Markham, B. Ternai, R. Stanley, H. Geiger, T. J. Mabry, Tetrahedron 1978, 34, 1389.
- [8] P.-C. Kuo, M.-Y. Hsu, A. G. Damu, C.-R. Su, C.-Y. Li, H.-D. Sun, T.-S. Wu, Planta Med. 2004, 70, 183.
- [9] P. Pachaly, C. Schönherr-Weißbarth, K.-S. Sin, Planta Med. 1990, 56, 277.
- [10] M. C. Roy, F.-R. Chang, H.-C. Hang, M. Y.-N. Chiang, Y.-C. Wu, J. Nat. Prod. 2005, 68, 1494.
- [11] T. Lhinhatrakool, S. Sutthivaiyakit, J. Nat. Prod. 2006, 69, 1249.

- [12] H. Yamamoto, K. Yan, K. Ieda, T. Tanaka, M. Iinuma, M. Mizuno, Phytochemistry 1993, 33, 841.
- [13] P. Y. Sun, Y. J. Chen, Ye. Wen, Y. P. Pei, Z. H. Liu, X. S. Yao, T. Takeda, Y. Ogihara, Acta Pharmacol. Sin. 1996, 31, 602.
- [14] P. Y. Sun, Y. Wen, Y. P. Pei, Z. H. Liu, Y. J. Chen, S. Noriko, T. Tadahiro, Acta Pharmacol. Sin. 1998, 33, 919.
- [15] W. K. Li, P. G. Xiao, G. Z. Tu, L. B. Ma, R. Y. Zhang, Phytochemistry 1995, 38, 263.
- [16] W. K. Li, P. G. Xiao, R. Y. Zhang, Chin. Chem. Lett. 1994, 5, 673.
- [17] M. Mizuno, N. Sakakibara, S. Hanioka, M. Iinuma, T. Tanaka, X. S. Liu, D. W. Shi, *Phytochemistry* 1988, 27, 3641.

Received April 25, 2007